Iterated solutions of linear operator equations with the Tau method
نویسندگان
چکیده
The Tau Method produces polynomial approximations of solutions of differential equations. The purpose of this paper is (i) to extend the recursive formulation of this method to general linear operator equations defined in a separable Hilbert space, and (ii) to develop an iterative refinement procedure which improves on the accuracy of Tau approximations. Applications to Fredholm integral equations demonstrate the effectiveness of this technique. 1. Canonical polynomials of linear operators Let X be a separable Hilbert space having a basis x := {x0, x1, x2, . . . } , and let A(X) denote the space of all linear operators on X . Then, for A ∈ A(X) and for all i ∈N, Axi is a linear combination of the basis elements: Axi = ∑ j aijxj , aij ∈ C. (1) For A ∈ A(X) and x, y ∈ X , we define the equivalence relation x ≡A y iff x− y ∈ kerA . An operator A is said to be banded-from-above if there exists an integer k ∈ N which satisfies the property P (k) defined as: aij = 0 ∀i, j ≥ 0 with j − i ≥ k + 1. Let Ab(X) ⊆ A(X) denote the subspace of all banded-from-above operators on X , and define an integer-valued function on the elements of Ab(X) by h(A) := min{k ∈ N : P (k)} which, following Ortiz [3, 4], is called the height of A . Then, if A ∈ Ab is of height h(A) equation (1) becomes Axi = h+i ∑
منابع مشابه
Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملThe Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
متن کاملThe solutions to some operator equations in Hilbert $C^*$-module
In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.
متن کاملNumerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997